

Call for Abstracts
14th International Conference
Energy Efficiency in Motor Driven Systems
EEMODS'26
Berlin (Germany)
19- 21 May 2026

Following the success of the previous EEMODS Conferences (Lisbon (1996), London (1999), Treviso (2002), Heidelberg (2005), Beijing (2007), Nantes (2009), Washington D.C. (2011), Rio de Janeiro (2013), Helsinki (2015), Rome (2017), Tokyo (2019), Stuttgart (2022), and Lucerne (2024), **CWIEME Berlin is hosting the 14th International Conference on Energy Efficiency in Motor Driven Systems (EEMODS'26)**.

The Conference will be held in **Berlin**, Germany, on **19 - 21 May 2026**.

Previous EEMODS events have been very successful in attracting distinguished and international presenters and attendees. The wide variety of stakeholders included professionals involved in manufacturing, marketing, and promotion of energy efficient motors and motor driven systems (pumps, compressors, fans, etc.), policy makers and researchers. Participants come from manufacturers, academia, research institutes, utilities, or public policy.

EEMODS'26 will provide a forum to discuss and debate the latest developments having impacts on electrical motor systems as well as the motors systems impact on energy consumption and the environment, the energy efficiency policies and programs, standards and programs adopted and planned, and the technical and commercial advances made in the dissemination and penetration of energy-efficient motor systems. Special Sessions will be dedicated to the topic of Circular Economy and Digitalization and AI in relation to energy efficiency.

The three-days' conference will include plenary sessions where key representatives of governments and international organizations, manufacturers, program managers and experts will present their views and programs to advance energy efficiency in motor systems, for example, through international co-operation on efficiency requirements. Parallel sessions on specific themes and topics will allow in-depth discussions among participants.

The conference is international by nature and aims to attract high quality and innovative papers and participants from every corner of the world.

To contribute to the success of the conference and to facilitate the development of new technologies, policies, and strategies to increase energy efficiency, we **invite you** to participate in the conference and **to submit abstracts** on the below topics.

Call for Paper Topics

Technologies, Research and Innovation (including case studies)

1. Electric Motors

Life cycle costing, test methods and measurements, induction motors with emphasis on achieving greater energy savings through technology and design using permanent magnet motors, DC brushless motors, motors with frequency inverters, motor repair, maintenance and operation, evaluation tools, 3D printing. Motor monitoring sensors for IoT systems and artificial intelligence/machine learning-based systems applied to electric motors in order to detect and prevent failures and to save energy.

2. Emerging Motor Technologies

Super-Premium Motor Technologies (synchronous reluctance, switched reluctance, permanent magnet, Hybrid rotors, line-start permanent magnet motors, induction motors, new motor designs (e.g. axial flux motors and amorphous metals).

3. Power Electronics and Drives

New solutions in drives in relation to energy savings, calculation of drive efficiency, successful application of drives, advanced integrated motor and drives, application-oriented optimization of drives (motion control tasks), power quality issues. Emerging Motor-driven system and Drive Technologies. Wide bandgap power electronics, advanced motor-drive packaged systems, advanced fluid system packages. Motor driven unit related harmonics.

4. Pump Systems

Life cycle costing, energy saving improvements in pumps, pumps classification, maintenance and operation of pumps and pumping systems, on-site assessment of pump efficiency, efficiency test methods, energy-saving tools, market assessments, system design and optimization, pumps energy-saving programs, efficient methods to control the flow and pumps working as turbines. This topic covers industrial, water supply and treatment and irrigation pumps, and water pumps in buildings.

5. Compressed Air Systems

Maintenance and operation of compressed air systems and compressors, advanced compressor design to optimize efficiency, energy saving improvements in air compressors and controls, life cycle costing, compressor energy-saving programs, energy-saving tools, market assessments, system design and optimization, air compressor/compressor system efficiency test methods, efficient methods to control flow/pressure, methods to detect leaks, efficiency assessment regarding temperature, pressure, leak, compressor types, coupling etc.

6. Fans / Exhauster Systems

Life cycle costing, energy saving improvements, maintenance operation, efficiency test standards, energy-saving tools, market assessments, efficient methods to control flow, system design and optimization, drive belts, energy saving programs, classification and labelling schemes. This topic covers industrial and buildings' fans, ventilation or exhaust systems.

7. Refrigeration Systems

Life cycle costing, maintenance and operation, new refrigerants, system optimization, load management, VSD, efficiency testing, energy-saving potentials, industrial applications, compressor design, heat recovery, system cycle optimization, software tools. This topic covers display cabinets and cold storage rooms.

Call for Paper Topics (continued)

8. Mechanical Power Transmission

Coupling between electrical motors and mechanical machines (pumps, compressors, fans, exhaust fans, etc.); efficiency of different couplings; flat belts, V belts, timing belts, gearboxes/gearings, pulleys, conveyor belts.

9. Motors in Household Appliances and HVAC

Improved and innovative motors; optimized designs, motor control, system optimization, energy labelling, databases, energy consumption, reliability. This topic covers motors for residential and commercial equipment (refrigerators, washing machines, air conditioners, etc.).

10. Motors and Drives for Transportation and other Applications

Electric and hybrid cars, airplanes, bikes and scooters, mixers, lifts, escalators, elevators, trains, light rail, vessels, aerospace and other transport systems using electric motors and drives.

11. Digitalization

Smart sensors, smart control and continuous monitoring, real-time monitoring, adaptation of production to needs and demand, energy savings through digitalization, online optimization of energy usage, data analytics (at equipment/production line/facility level), production efficiency, increased production availability, predictive maintenance, Internet of Things, cloud-based services, digital twins for planning and resource optimization, artificial intelligence, augmented reality. Motor systems and energy flexibility, peak shaving, load shifting, participation in balancing market, case studies, best practices. Use of Artificial Intelligence in managing motor systems.

12. Wireless Power Transfer

Inductive power transfer in various applications, e.g. rotors in externally excited synchronous motors, spindle motors, magnetic guided spindle drives, magnetically supported spindle drives, autonomous guided transport vehicles, electric vehicles while parking, electric vehicles while driving etc.

Policies, Programs Regulation and International Standards

13. Industrial Management Policies

Energy management, role of energy manager, energy management standards (ISO 50001), contract energy management, winning company approval for energy efficiency projects, staff, training and qualification, M&V, Energy Service Companies (ESCOs).

14. Motor System Audit and Programmes

Motor challenge programs, utilities programs for motor and motor systems, audit schemes, standards (ISO 50002), advances in energy measurement techniques, software tools for auditors, monitoring and verification, audit case studies, national audit programs, evaluation of audit effectiveness, capacity building of auditors. Motor system optimization evaluation and case studies, addressing energy and non-energy benefits.

15. Policies, Programs and Financing

Analysis of motor system energy use & greenhouse gas emissions, estimates or scenarios of reduction potentials; life-cycle costing; testing procedures, efficiency classes, marking schemes, labels; comprehensive market transformation strategies & programs; minimum energy performance standards; voluntary agreements; procurement programs; promotion of efficient systems via ESCOs, incentive programs, financing facilities, carbon markets, white certificates, and other mechanisms; information and training; tools, motor promotion campaigns, motor databases, motors and VSD promotion campaigns and rebates, motor system

(including VSD) promotion policies. Motor user behavior and investment decisions. This topic includes also policy and program evaluation. Policies and programs for e-vehicles and related charging infrastructure. This topic includes also policy and program evaluation.

16. Global Test Standards

Harmonization and alignment of global test standards for motor efficiency requirements, for motor system components and for motor systems; effective comparison of existing standards; routes to improve definitions and the applicability of standards into regulations and for market surveillance.

17. System Energy Efficiency

Methods and policies for system energy efficiency (extended products policies for pumps, compressors, fans, blowers and mining equipment, lift equipment, etc.); comparison among the different metric, systems and methods; special focus on measurement methods accuracy and reproducibility, the relationships between component efficiency, system efficiency, and energy savings.

18. Market Surveillance and Enforcement Mechanisms

Means for ensuring compliance and the consequences of non-compliance, both for mandatory programs like MEPS, but also compliance with voluntary market transformation programs such as Energy Star. Market surveillance and enforcement of motors embedded into other equipment.

19. Material Efficiency, Circular Economy and Electrification

Material efficiency, usage sharing, maintain and prolong lifetime, reusing and redistributing motors and drives (refurbish and remanufacture), motors and drives' repairability, durability, recyclability, digital product passport (DPP). Environmental footprint, resource efficiency, material efficiency assessment, assessment of raw materials, end-of-life scenarios, Product lifecycle assessment, LCA reporting, environmental product declaration, Ecodesign, Sustainable product initiative, data exchange, product related data points, EU circular passport, Industry 4.0, motor declaration in the IEC Common Data Dictionary (CDD) and in ECLASS. Role of motor in contributing to the electrification of economy, e.g. electric motors replacing combustion engines.

Instructions for Authors

General

EEMODS'26 will be an in presence only conference, there will not be virtual participation.

Authors interested in making a presentation at EEMODS'26 are requested to send an abstract maximum 500 words in length on one or more of the above topics. The abstract must be in English. Abstracts must be innovative, stimulate discussion and be free of commercialism.

Accepted abstract will be presented at EEMODS'26.

Authors can also submit a paper related to their presentation, which will be published in the Book of Proceedings or in an ISI journal with Impact Factor and indexed in Scopus and Web of Science. Authors must indicate when submitting an abstract whether they will write a paper or not.

Instructions for Authors for abstract submission procedure:

The abstract must contain the following elements:

1. Title.
2. Authors, affiliations and emails
3. Topic covered (refer to the numbering above)
4. Keywords (up to 5)
5. Whether a paper will be submitted

Conference Calendar

31 January 2026:	Abstracts are due to the conference secretariat by email to: paulo.bertoldi@ec.europa.eu ,
16 February 2026:	Authors will be notified by email as to whether their abstracts have been accepted or rejected.
31 March 2026:	Authors must submit draft papers by email to: paulo.bertoldi@ec.europa.eu , template will be provided.
31 May 2026:	Authors will receive comments on draft papers by email
31 July 2026:	Final papers must be ready and submitted by email to paulo.bertoldi@ec.europa.eu for inclusion in the conference proceedings.
19-21 May 2026:	EEMODS'26 takes place in Berlin

Contacts

Website: <https://berlin.cwiemeevents.com/page/about-eemods>

email: help@cwiemeevents.com

(to be used for registration and other logistic information)

For technical and scientific enquiries

please contact:

Paolo Bertoldi
European Commission
paulo.bertoldi@ec.europa.eu

Conference Location and Travel Information

The **EEMODS Conference** will be co-located with **CWIEME Berlin 2026** at Messe Berlin, Germany.

The Plenary Session will be held at the **Electric Motor Forum in Hall 25**, while the parallel sessions will take place in the nearby **meeting rooms**

Messe Berlin is located on the west side of the city, offering excellent transport connections including taxi ranks, underground (U-Bahn) and light rail (S-Bahn) stations, and multiple bus stops. The nearest airport is Berlin Brandenburg (BER), providing convenient international and domestic access.

Venue Address

Messe Berlin – South Entrance
Messedamm 22, D-14055 Berlin, Germany

Getting There

By Car

If you are travelling by car, the A100 ring road and A111 Autobahn are located close to the exhibition grounds, providing easy access from the city centre and airports. Parking facilities are available nearby.

By Shuttle Bus

A complimentary shuttle bus service will operate each afternoon during CWIEME Berlin.

20. Service runs every 30 minutes from 3:30 PM onwards.
21. Route: From the South Entrance to central Berlin.
22. Seats are limited and available on a first-come, first-served basis.

By Subway (U-Bahn)

The Messe Süd U-Bahn station is just a 3-minute walk from the South Entrance—an ideal option to avoid traffic and reach the venue quickly.

By Taxi

A taxi pick-up point is located directly outside the South Entrance. Please note that Uber vehicles are not permitted to collect passengers at the venue; we recommend using a local taxi service instead.

For the latest travel and venue updates, please visit the [Plan Your Visit to CWIEME Berlin](#) | [Hotel Deals & Visiting Messe Berlin | CWIEME Berlin](#).

Where to stay

HotelMap is our exclusive accommodation partner operating in over 500 cities worldwide and includes over 1,000,000 accommodation operators. As a unique service for CWIEME attendees, you will receive [discounted market rates](#) compared to booking providers!

EEMODS'24 International Programme Committee

1. Ajit Advani, International Copper Association, India
2. Alexandra da Fonte Martins, Hyve Group, UK
3. Andre Kraemer, Sew-Eurodrive, Germany
4. Andrea Trianni, University of Technology Sydney, Australia
5. Andrea Vezzini, Bern University of Applied Sciences, Switzerland
6. Anibal T. De Almeida, University of Coimbra, Portugal
7. Benno Weis, Siemens, Germany
8. Bernd Ponick, Leibniz University, Germany
9. Christoph Nöth, Innomotics, Germany
10. Conrad Brunner, Switzerland
11. Dinesh Kumar, Danfoss Drives A/S, Denmark
12. Eberhard Jochem, Fraunhofer Institute, Germany
13. Edson C. Bortoni, Itajubá Federal University, Brazil
14. Emmanuel Agamloh, Baylor University, USA
15. Enrico Cagno, Politecnico di Milano, Italy
16. Giuseppe Fabri, Università dell' Aquila, Italy
17. Frederic Beghain, EASA, Luxembourg
18. Fernando Nuno, International Copper Association Europe, Belgium
19. Florian Risch, FAPS, Germany
20. Firuz Zare, Queensland University of Technology, Australia
21. Hu Bo, CLASP, China
22. John Petro, Independent consultant, USA
23. Jörg Franke, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany
24. Jukka K. Tolvanen, Aumaen energy, Sweden
25. Jürgen Albig, ZIEHL-ABEGG, Germany
26. Lassi Aarniovuori, LUT, Finland
27. Liu Ren, CNIS, China
28. Konstantin Kulterer, Austrian Energy Agency, Austria
29. Kurt Stockman, Ghent University, Belgium
30. Maarten van Werkhoven, Tpa advisors, The Netherlands
31. Malcolm Robertson, Robertson Technology, Australia
32. Martial Patra, Schneider Electric, France
33. Martin Doppelbauer, Karlsruhe Institut für Technologie (KIT), Germany
34. Michael Ivanovich, AMCA, USA
35. Michael Koenen, KSB, Germany
36. Patrik Thollander, LIU, Sweden
37. Paolo Bertoldi, European Commission, Luxembourg
38. Peter Radgen, University of Stuttgart, Germany
39. Prosanto Pal, TERI, India
40. Rahul Kanchan, ABB, Sweden
41. Rita Werle, Impact Energy, Switzerland
42. Roland Brüniger, IEA 4E Electric Motor Systems Annex – EMSA, Switzerland
43. Ron Astall, United Pumps Australia
44. Sandie Brændgaard Nielsen, Danish Technological Institute, Denmark
45. Sebastião Nau, WEG, Brazil
46. Stephen Bonnick, Queensland Treasury, Australia
47. Steve Kenihan, Department of Climate Change, Energy, the Environment and Water, Australia
48. Troy Leyden, Variable Efficiency, Australia
49. Yuji Kurata, JEMA, Japan