

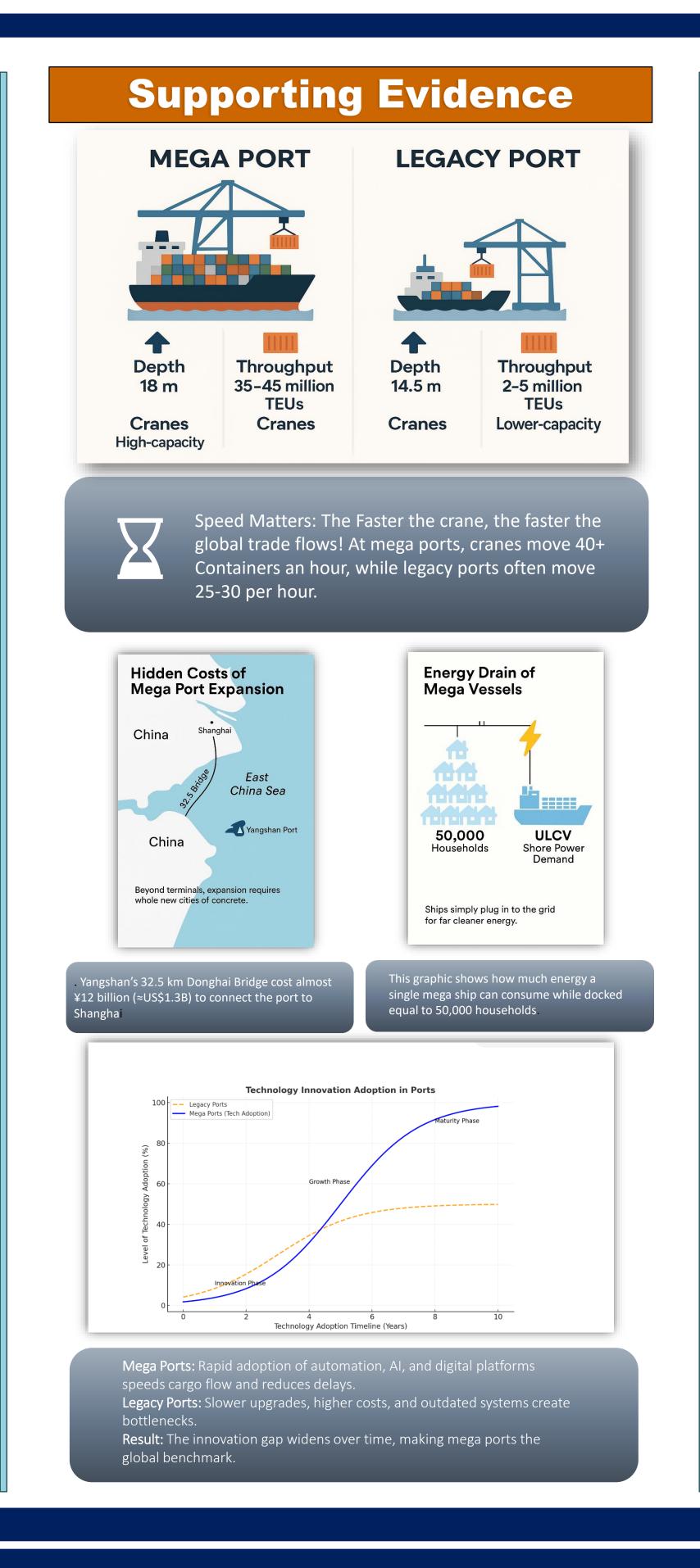




#### **Abstract**

Maritime transport moves over 80 percent of goods traded worldwide by volume, a testament to the critical role of ports in global commerce. This research compares legacy ports and mega ports to highlight challenges and opportunities shaping global trade. Data from the Bureau of Transportation statistics (BTS) shows how U.S. maritime exports and imports vary by cost, underscoring the demand for infrastructure that can handle volumes and larger vessels.

Reports such as The Impact of Mega Ships and the Port Infrastructure Strategic Business Report 2025 reveal that mega ports benefit from scalability, advanced containerization, and faster vessel turn around, while legacy ports often ace bottlenecks and costly upgrades.


Mega ports set the benchmark for capacity and resilience, but legacy ports remain vital- facing urgent pressure to modernize to stay competitive in an evolving global supply

## Introduction

Global commerce moves at the speed of port innovation—and the future of trade flows where ports can scale" (Humphreys, 2023; UNCTAD, 2023). Ports power nearly 80% of global trade (Danladi et al., 2024; Humphreys, 2023). Mega ports lead with scale, advanced containerization, and rapid vessel turnaround (UNCTAD, 2023), while legacy ports face costly bottlenecks and slower adaptation (Danladi et al., 2024). Our research team conducted a comparative analysis of mega and legacy ports—showing how mega ports set the benchmark for efficiency and why legacy ports must modernize to remain competitive in today's global supply chain (Danladi et al., 2024; UNCTAD, 2023)

# Methodology

This study conducts a comparative analysis of Asian mega ports and U.S. legacy ports to address the guiding question: What is Asia doing that the United States is not? Data was collected from authoritative sources, including port authority reports, global shipping databases, and international trade organizations such as UNCTAD and the World Shipping Council. The analysis examined container throughput, technological innovation, infrastructure development, sustainability practices, and logistics efficiency. Particular attention was given to Shanghai's deep-water facilities, automated terminals, and integrated transport networks, which were evaluated against U.S. ports that continue to encounter infrastructure bottlenecks, limited scalability, and slower technological adoption. This comparison underscores Asia's competitive advantage in efficiency and long-term investment strategies, while providing critical insights into modernization pathways for U.S. ports seeking to strengthen their position in global trade.



# **Findings LEGACY PORT MEGA PORT** 96 hrs TURNAROUND TIME **What Sets Mega Ports Apart** Mega ports like Shanghai and Busan embody efficiency and scale. China's Yangshan Deepwater Port, built for mega-vessels, uses automated terminals, Al-driven logistics, and deep-water berths designed for decades of growth. Their strength lies in forecasting demand and executing bold, long-term expansions, giving them a clear edge in global trade. **What Legacy Ports Lack** Infrastructure Depth: Shallow drafts, outdated layouts, and congestion limit mega-**Technology:** Reliance on outdated IT contrasts with mega ports' digital twins, automation, and Al systems. Planning & Funding: Piecemeal upgrades and local debates fall short of the centralized, government-backed strategies driving mega ports. **Sustainability:** Adoption of shore power, electrification, and renewables lags behind next-generation projects. **How U.S. Ports Can Compete** Expand deep-water capacity with dredging and modern berthing. Adopt predictive tools AI, blockchain, and digital twins for faster turnaround. Strengthen governance through federal-private investment partnerships. Lead in sustainability by fast-tracking green energy and emissions reduction.

| Port                | Infrastructure<br>Capacity | Technology &<br>Automation | Digital<br>Integration | Environmental<br>Measures | Global<br>Competitiveness | Strategic<br>Planning | Sustainability<br>Goals | Port Expansion<br>Capability | Carbon<br>Neutral By |
|---------------------|----------------------------|----------------------------|------------------------|---------------------------|---------------------------|-----------------------|-------------------------|------------------------------|----------------------|
| U.S. Legacy Ports   |                            |                            |                        |                           |                           |                       |                         |                              |                      |
| Port of Houston     | /                          |                            |                        | /                         |                           |                       | 1                       |                              | 2050                 |
| Port of New Orleans | /                          |                            |                        | /                         |                           |                       | 1                       |                              | 2050                 |
| Port of Baltimore   | 1                          |                            |                        | /                         |                           |                       | 1                       |                              | 2050                 |
| Asia Mega Ports     |                            |                            |                        |                           |                           |                       |                         |                              |                      |
| Port of Shanghai    | /                          | 1                          | 1                      | 1                         | 1                         | 1                     | 1                       | 1                            | 2040                 |
| Port of Singapore   | /                          | 1                          | 1                      | /                         | 1                         | 1                     | 1                       | 1                            | 2040                 |
| Port of Busan       | /                          | 1                          | 1                      | /                         | /                         | 1                     | 1                       | /                            | 2040                 |

Cost: Upgrading a U.S. legacy port to mega-port capacity can run \$5–10+ billion per port, spread across dredging, automation, intermodal links, digital platforms, and land expansion.



Time: Because of fragmented funding and lengthy environmental/local reviews, projects can stretch 10–20 years, compared with centralized mega-port projects abroad that often complete major phases in under a decade.

#### **Path Forward**

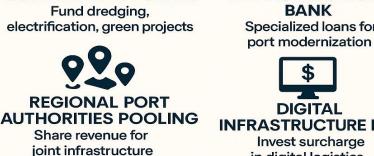
DEEPWATER **EXPANSION** ultra-large (ULCVs).

TECHNOLOGY **ADOPTION** Use 'Port Community Harden infrastructure platforms where shipping extreme weather) warehouses, and rail operators share real-time data

**RESILIENCE & RISK MANAGEMENT** 






**REGIONAL PORT** 

Share revenue for

joint infrastructure



Attract investment from





14,5 m/=47,6 ft









PATH FORWARD:

TRANSITION STEPS FOR PORT DEVELOPMENT

**LEGACY PORT TRANSITION** 

### Conclusion

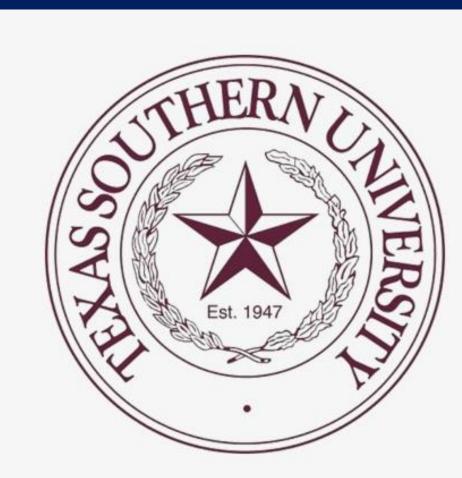
Mega ports like Singapore, Busan, and Shanghai prove the power of deepwater capacity, automation, and long-term investment. U.S. legacy ports remain vital but limited by shallow channels, incremental upgrades, and slower adaptation.

To stay competitive, U.S. ports must move from reactive fixes to proactive transformation expanding deep-water access, adopting predictive technologies, investing strategically, and leading in sustainability. Their future strength depends on how quickly they can match the vision, speed, and efficiency of the world's mega ports.

Scan For References



# Mega Port Expansion Vs Legacy Infrastructure


Student Names: Erin Cyan Wilson, Carolina Soto Jaines.

**Goodness Usoro** 

Faculty Advisor: Dr. Alfred Henson

**University Name: Texas Southern University** 

Industry Advisor: Dr. Alfred Henson, Texas Southern University

